THE UNIVERSITY of TENNESSEE

Biogeochemical Controls Over Organohalide-Respiring Chloroflexi

Frank Löffler

KNOXVILLE

Center for Environmental Biotechnology Department of Microbiology Department of Civil & Environmental Engineering Bioscience Division, Oak Ridge National Laboratory

Contaminated Sites in the U.S.

2

Reductive Dechlorination: A Process that Leads to Contaminant Detoxification *In Situ*

Organohalide Respiration

Freedman, D. L., and J. M. Gossett. 1989. Appl. Environ. Microbiol. 55:2144-2151 He et al. 2003. Nature. 424:62-65

Populations Involved in Reductive Dechlorination of CEs

Sung et al. 2006 AEM, 72:2775 4

Löffler et al. 2013 IJSEM, 63:625

Populations Involved in Reductive Dechlorination of Chlorinated Ethenes

$$\begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

1,173 GW samples, 111 sites849 samples: *Dhc* & *Dhgm*65%: *Dhgm* outnumber *Dhc*

Yang et al. ISME J. 2017. 11:2767-2780e

Populations Involved in Reductive Dechlorination of Chlorinated Ethenes

$\begin{array}{c} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

1,173 GW samples, 111 sites 849 samples: *Dhc* & *Dhgm* 65%: *Dhgm* outnumber *Dhc*

Yang et al. ISME J. 2017. 11:2767-2780e

Dimer of PceA Sulfurospirillum multivorans Bommer et al. 2014. Science, 346:455 Payne et al. 2015. Nature, 517:513

Deringer

7

De novo Biosynthesis of Corrinoids

Dhc & Dhgm: Strict Requirement for Corrinoid

Complete Dechlorination (Detoxification)

Specific Aims

- Aim 1: Explore the specific cobamide requirements of organohaliderespiring *Dhc* relevant for detoxification of chlorinated ethenes
- Aim 2: Demonstrate that geochemical conditions affect the specific cobamide pool, and hence *Dhc* activity
- Aim 3: Identify community and *Dhc* biomarkers that indicate when cobamide and/or lower base bioavailability limit *Dhc* reductive dechlorination activity

Simplified Model of Organohalide Respiration

Dehalococcoides mccartyi → Corrinoid auxotroph

Geobacter lovleyi → Corrinoid prototroph

Who Supplies Corrinoid to Dhc and Dhgm?

Co-Culture Experiments: Corrinoid Producer / Dhc mccartyi

Strain BAV1 Strain FL2

dechlorination activity?

Summary of Co-Culture Experiments

Summary of Co-Culture Experiments

Yan et al. 2012. Appl. Environ. Microbiol. 78:6630-6636

Co-Culture Experiments

Co-Cultures		Dhc
Corrinoid Producer	Dhc Strains	Growth
Geobacter lovleyi	BAV1, FL2	+
Geobacter sulfurreducens Wildtype	BAV1, FL2	-
<i>Geobacter sulfurreducens</i> + pNJ052	BAV1, FL2	+

5-Methoxybenzimidazole (5-OMeBza)

N

Jiang et al. 2019. In Preparation

Key Dhc RDases

Lower Base Affects Dechlorination Activity

Yan et al. 2016. ISME J. 10:1092–1101

Lower Base Affects Dechlorination Activity

Corrinoid Production Under Different Redox Conditions

Corrinoids Produced by the Community Under Different Redox Conditions

Redox Conditions Affect Corrinoid Type(s) and Quantity

Corrinoid Quantity and Quality Determine *Dhc* **Activity**

Jurado et al. 2017, Sci. Total Environ. 584–585:207-218

N₂O Inhibits Corrinoid-Dependent Reductive Dechlorination

Impact of Increased N₂O in Environmental Systems

N ₂ Ο (μΜ)
0.3
12.5
37.4
75
84
143
65.7

 $K_{i, N2O}$ = 40.8 \pm 3.8 μM

$$K_{i, N2O}$$
 = 21.2 \pm 3.5 μ M

K_{i, N2O} = 9.6 ± 0.4 μM

Yin et al. 2019. Environ. Sci. Technol. Nitrous Oxide is a Potent Inhibitor of Bacterial Reductive Dechlorination. 53:692-701

Jurado et al. 2017, Sci. Total Environ. 584–585:207-218

Adenosylcobalamin Biosynthesis

High-Throughput qPCR

• Monitor many biomarker genes simultaneously

- Scalable platform (224x12; 112x24; 56x48)
- Cost per reaction reduced from \$3.0 to
 \$0.30
- Four plates can be cycled simultaneously, producing up to 12,288 qPCR data points per run

Kara Murdoch et al. 2019. In Preparation

Take Home Messages

- Corrinoids are essential for most organisms
- Corrinoid-auxotrophic OHRBs (e.g., *Dhc*, *Dhgm*) are ideal systems to study corrinoid effects on metabolism
- Corrinoid quantity (flux) affects dechlorination activity
- Corrinoid type (lower base) determines reductive dechlorination rates and end points (i.e., function) in *Dhc*
- Geochemistry affects corrinoid pool
- Purine is a naturally occurring lower base
- New avenues to manipulate microbal metabolism (function, ecology → biotechnology, medicine)

Peer-reviewed Manuscripts

Yin, Y., Yan, G. Chen, F. Kara Murdoch, N. Pfisterer, and F.E. Löffler. 2019. Nitrous oxide is a potent inhibitor of bacterial reductive dechlorination. Environ. Sci. Technol. 53:692-701 | doi: 10.1021/acs.est.8b05871

Yan, J., M. Bi, A.K. Bourdon, A.T. Farmer, P.-H. Wang, O. Molenda, A. Quaile, N. Jiang, Y. Yang, Y. Yin, B. Şimşir, S.R. Campagna, E.A. Edwards, and F.E. Löffler. 2018. Purinyl-cobamide is a native prosthetic group of reductive dehalogenases. Nat. Chem. Biol. 14:8-14. | doi:10.1038/nchembio.2512

Clark, K., D.M. Taggart, B.R. Baldwin, K.M. Ritalahti, R.W. Murdoch, J.K. Hatt, and F.E. Löffler. 2018. Normalized quantitative PCR measurements as predictors for ethene formation at sites impacted with chlorinated ethenes. Environ. Sci. Technol. 52:13410-13420 | doi: 10.1021/acs.est.8b04373

Yang, Y., S.A. Higgins, J. Yan, B. Şimşir, K. Chourey, R. Iyer, R.L. Hettich, B. Baldwin, D.M. Ogles, and F.E. Löffler. 2017. Grape pomace compost harbors organohalide-respiring *Dehalogenimonas* species with novel reductive dehalogenase genes. The ISME Journal. 11:2767-2780. | doi: 10.1038/ismej.2017.127

Yan, J., B. Şimşir, A.T. Farmer, M. Bi, Y. Yang, S.R. Campagna, and F.E. Löffler. 2016. The corrinoid cofactor of reductive dehalogenases affects dechlorination rates and extents in organohalide-respiring *Dehalococcoides mccartyi*. ISME J. 10:1092-1101. | doi: 10.1038/ismej.2015.197

Team Corrinoid

Dr. Fadime Kara Murdoch Yongchao Yin Nannan Jiang Dr. Jun Yan Laurel Seus Burcu Şimşir Yi Yang **Steven Higgins**

Amanda Devolk

Meng Bi

<u>UTK Chemistry</u> Abigail Farmer, Allen Bourdon, Alex Fisch, Shawn Campagna

National Institute of Environmental Health Sciences Your Environment. Your Health.

Microbial Insights, Inc. Microbial Dora Ogles-Taggart, Kate Clark, Brett Baldwin University of Toronto Po-Hsiang (Tommy) Wang, Elizabeth Edwards

